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Abstract

Recent contributions have explored how lack of buyer mobility af-
fects pricing. For example, Burdett, Shi, and Wright (2001) envisage
a two-stage game where, once prices are set by the firms, the buyers
play a static subgame by choosing independently which firm to visit.
We incorporate imperfect mobility in a duopolistic pricing game where
the buyers are involved in a multi-stage game. The firms are shown
to have an incentive to elicit loyalty on the part of the buyers by giv-
ing service priority to regular customers. Then equilibrium prices are
higher than under a static buyer subgame; further, they converge to
their value under perfect buyer mobility as the number of stages of the
buyer subgame increases.

1 Introduction

Research on Bertrand-Edgeworth competition (price competition among
capacity-constrained sellers) has tended to ignore the most obvious misal-
locations that would prevent maximization of consumers’ and total surplus.
More specifically, given the prices set by sellers of an identical good, at least
the two following requirements for an efficient buyer allocation are usually
assumed to hold: excess capacity at some firm cannot coexist with excess
demand at other firms; relatively expensive firms receive no demand unless
cheaper rivals are already producing at capacity. One possible, yet quite
unrealistic, justification is to assume perfect mobility of buyers, that is, that
any available capacity elsewhere is instantly detected and taken advantage
of by any buyer who is rationed or asked to pay more at the chosen firm.

In contrast, in some recent models, after prices are set the buyers are
playing a static game, each one selecting independently the firm to visit (see,
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among others, Peters, 1984 and 2000, Deneckere and Peck, 1995, Burdett,
Shi, and Wright, 2001). This amounts to assuming no ex-post buyer mobil-
ity: if rationed at the selected firm, the buyer cannot move to other firms.
The buyer’s payoff thus depends on the probability of being served as well as
the price at the chosen firm. The buyer allocation may be efficient only at a
pure strategy equilibrium of the buyer game. Yet there are a multiplicity of
such equilibria, all the more so the larger the number of buyers. Thus the at-
tention has understandably been focused on the (symmetric) mixed strategy
equilibrium, where misallocations occur with positive probability. Relying
on this solution, the lack of buyer mobility proves to significantly affect
equilibrium prices. Consider this simple setting, to be adopted throughout
the paper. Two identical firms produce the same indivisible good at con-
stant unit costs up to capacity. As in Burdett, Shi, and Wright (henceforth,
BSW), each buyer demands inelastically one unit at any price not above the
reservation price. Total capacity is fixed and equal to total demand. Un-
der perfect mobility, both firms charging the reservation price is the unique
equilibrium; in contrast, equilibrium prices are significantly less when the
buyers are playing a static game. In fact, at equal prices expected output is
less than each firm’s capacity at the mixed strategy equilibrium of the buyer
game. Consequently, with the rival charging the reservation price it pays to
undercut since all buyers would then try the lower-priced firm.

Compared to the two aforementioned approaches, this paper intends to
capture two features that are widely observed in real markets: goods are
often purchased repeatedly over the time period for which prices are set;
though buyers can move across the firms, mobility is too costly or unfeasible
in a very short run, hence misallocations do occasionally occur. In our model,
the buyers play a dynamic game of imperfect information once prices are
set: at each stage each buyer selects one firm to visit without observing the
choices made by the other buyers in the preceding stages.

To solve the buyer subgame we propose a variant of Kreps and Wilson’s
(1982) sequential equilibrium. Like sequential equilibrium, our “assessment
equilibrium” involves a profile of strategies together with coherent beliefs
at any information set where a buyer may be called upon to play. In a
setting of repeat purchasing decisions the firms may give service priority to
loyal customers rather than rationing purely at random among forthcom-
ing buyers. It turns out that the firms have in fact a strong incentive to
choose this “discriminatory” rationing rule. With such a rule in place, over
a wide range of prices it is an assessment equilibrium for the buyers to obey
a strategy of “conditional loyalty”, prescribing loyalty if served by the pre-
viously chosen seller. Along the equilibrium path some efficient allocation
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- where all buyers get served - is certainly achieved by the second stage of
the buyer game. Most important, although this equilibrium may also ex-
ist when the firms ration randomly, conditional loyalty appears much more
compelling under the discriminatory rule. Not only the benefits from condi-
tional loyalty are then much higher and more easily perceived; also, unlike
the random rule, the discriminatory rule disqualifies repeat playing of the
mixed strategy equilibrium as an equilibrium of the dynamic buyer game.

The successful matching between buyers and sellers quickly obtaining at
the assessment equilibrium of the dynamic buyer subgame has far-reaching
implications on pricing. At a symmetric pure strategy equilibrium of the
pricing game prices are higher than if buyers are involved in a static subgame;
also, they converge to their value under perfect mobility as the number of
stages of the buyer subgame goes to infinity. There is a clear intuition for
this: each firm is going to quickly achieve full capacity utilization anyway,
hence the incentives to undercutting the rival’s price become negligible as
the number of periods for which prices are set increases.

As already said, our model is similar in methodoloy to recent game-
theoretic analyses of price determination under limited buyer mobility. How-
ever, in our analysis the buyers make repeat quantity and visiting decisions,
which proves to have remarkable implications on pricing. It must also be
noted that some of our results are similar to those obtained, through a dif-
ferent methodology, by Kirman and Vriend (2001).1 These authors build an
agent-based computational economics model upon the assumption of adap-
tive behaviour: among the actions taken in the past by the agents, those
actions that gave better outcomes are more likely to be adopted in the fu-
ture. One result of their model is the gradual emergence, among the buyers,
of an attitude of loyalty to sellers previously visited and, among the sellers,
of a favorable attitude towards repeat buyers.

The remainder of the paper is organized as follows. Section 2 considers a
pricing game when the buyers are involved in a static game after prices are
set by the duopolists. After reviewing the two-seller two-buyer case (already
in BSW, along with more general ones), we turn to the case of any (even)
number z of buyers facing the duopolists (whose total capacity is always
assumed to equal total demand). We are able to derive the closed form
solution for equilibrium prices with z as argument. Section 3 analyzes price
setting when demand is made repeatedly by the buyers over T + 1 stages:

1The difference between their approach and the game-theoretic approach also adopted
in my earlier work on buyer loyalty (1996) is discussed thoroughly in Kirman and Vriend
(2001).
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we derive the closed form solution for equilibrium prices with z and T as
arguments. Section 4 briefly concludes.

2 Pricing under one-period purchasing

2.1 The basic setting

Two firms, A and B, produce the same indivisible good, each with a given
capacity y. Any quantity up to y is obtained at constant unit costs (nor-
malized to 0). There is a set Z={a, ..., h, ..., z} of z identical buyers. Prices
are set independently and simultaneously by the firms. Along with capac-
ities, prices are known to the buyers who choose simultaneously and inde-
pendently which firm to visit and how much to demand. Then each firm
produces its capacity or its forthcoming demand, whichever is smaller. In
this section, the buyers are playing a static game after the setting of prices.
Every buyer demands inelastically one unit so long as the price does not ex-
ceed the reservation price, normalized to 1. Thus each firm chooses a price
in the set P = [0, 1] .

At any pair (pA, pB) ∈ P2 individual demand is equal to 1; granted
this, buyer h’s action space is simply denoted by {fh} = {A,B} , where
fh = A is the action of visiting firm A. A mixed strategy by buyer h is
σh = (υh, 1− υh), where υh and 1− υh are the probabilities that h visits A
and B, respectively. For brevity we henceforth write the buyer strategy just
as υh and, accordingly, the space of mixed strategies as the unit interval,
I = [0, 1]. We denote by π(hsA) (π(h

s
B)) the probability of buyer h being

served conditional on visiting A (resp., B). Prospective buyers at a firm have
the same service probability.

Buyers are risk neutral, hence buyer h seeks to maximize his expected
surplus: this is (1− pA)π(hsA) if visiting A and (1− pB)π(hsB) if visiting B.
Total capacity is assumed to be equal to total demand:

2y = z, (1)

so we are forced to assuming an even number of buyers. A useful benchmark
is the case of perfect mobility, where the buyers can instantly and costlessly
move across the firms. Then the pair (pA = 1, pB = 1) is the unique equilib-
rium: charging the reservation price is in fact strictly dominant for it allows
the firm selling at capacity regardless of the rival’s price.

4



2.2 The two-buyer case

We begin with the duopolists facing two buyers. (Apart from minor refine-
ments, most of the results in this subsection are in BSW.) For a wide subset
of P2, the buyer game has a symmetric mixed strategy equilibrium along
with nonsymmetric pure strategy ones. Denote the buyers by h and k. Con-
ditional service probabilities at A andB are, respectively, π(hsA) =

υk
2 +1−υk

and π(hsB) = υk+
1−υk
2 for h and π(ksA) =

υh
2 +1−υh and π(ksB) = υh+

1−υh
2

for k. An equilibrium in strictly mixed strategies is symmetric, with υ such
that (1− pA)(υ2 + 1− υ) = (1− pB)(υ + 1−υ

2 ). This yields

υ = υ(pA, pB) =
1− 2pA + pB
2− pA − pB . (2)

Thus a mixed strategy equilibrium (henceforth, a MSE) exists so long as

2pA − 1 < pB < 1 + pA
2

. (3)

Holding (3), two pure strategy equilibria (PSE) also exist, (υh = 1, υk = 0)
and (υh = 0, υk = 1). At the MSE, each buyer has an expected surplus
less than min {1− pA, 1− pB} and expected output is less than capacity for
each firm. At each PSE, the buyers get 1 − pA and 1 − pB and the firms
sell their capacity. Thus the PSEs Pareto-dominate the MSE. The buyers
are assumed to take their decisions independently because of too high costs
they should face to coordinate their actions.2 Consequently, it is far from
obvious that either PSE is played. In a sense, by allowing for misallocations
of buyers the MSE seems to yield better predictions of the game outcome.
Accordingly, holding (3) the buyers will be assumed to play the MSE.

At pairs of prices such that 2pA − 1 > pB, the unique equilibrium is
(υh = 0, υk = 0); the equilibrium is likewise (υh = 1, υk = 1) if pB >

1+pA
2 .3

Special cases arise when 2pA − 1 = pB and when pB = 1+pA
2 . In the former,

any strategy profile (υh = 0, 0 ≤ υk ≤ 1) represents an equilibrium and
so does any profile (0 ≤ υh ≤ 1, υk = 0); yet it is reasonable to select
equilibrium (υh = 0, υk = 0) since υh = 0 is weakly dominant.4 By the same
token, with pB =

1+pA
2 one can select equilibrium (υh = 1, υk = 1).

Turn now to pricing. Without loss of generality the analysis will hence-
forth be carried out in terms of firm A. Unlike under perfect mobility,

2This assumption is certainly most appropriate when there are many buyers.
3 In either case, the equilibrium is ex-post inefficient. Let the equilibrium be (υh =

0, υk = 0) and let h be rationed. If h could move to A, then he would get a positive
surplus and benefit A without harming neither k nor B.

4With 2pA − 1 = pB , it is only when υk = 0 that υh = 1 is also a best response.
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(pA = 1, pB = 1) is not an equilibrium. At equal prices υ = 1
2 at the MSE

of the buyer game; hence expected output is (12)
2+2(12)

2 = 3
4 for each firm.

Consequently, with B charging the reservation price it pays A to slightly
undercut, which raises A’s expected profit from 3

4 to almost 1 (both buyers
would try A, where there is a chance of getting a tiny surplus). Denote by
EΠA firm A’s expected profits: EΠA = pAEyA, where EyA is A’s expected
output. dEΠA/dpA = ∂EΠA/∂pA + (∂EΠA/∂υ)(∂υ/∂pA), that is,

dEΠA
dpA

= EyA + pA
dEyA
dυ

∂υ

∂pA
. (4)

Holding (3), EyA = υ2+2υ(1−υ) with υ determined by (2), and ∂υ/∂pA =
3(pB−1)/(2−pA−pB)2. Concavity ofEΠA in pA is readily established for the
two-buyer case. In (4), EyA decreases as pA increases (and υ correspondingly
decreases). The term pA(dEyA/dυ)(∂υ/∂pA) decreases too since the positive
factors pA and dEyA/dυ both increase (dEyA/dυ is decreasing in υ) while
the negative factor decreases (∂2υ/∂p2A < 0).

At an interior maximum dEΠA/dpA = 0. Looking for a symmetric equi-
librium we also put pA = pB ≡ p and υ = 1

2 , obtaining (pA =
1
2 , pB =

1
2).

2.3 The z-buyer case

Here we take the duopolists as facing any (even) number of buyers.5 The
first step is to identify the region of P2 where a symmetric MSE of the
buyer game exists. Let Sh(υa, ..., υh, ...,υz) - or, more concisely, Sh(υh,υ−h)
- be h’s expected surplus at strategy profile (υh, υ−h) . We now see that a
symmetric MSE exists in the same region of P2 where it does with z = 2.

Lemma 1 (i) Holding (3), a symmetric MSE of the buyer game exists; (ii)
failing (3), the buyer game has no equilibrium in strictly mixed strategies.

Proof. (i) The buyer game is symmetric: Sh(υh, υ−h) = Sk(υk, υ−k)
∀h, k ∈ Z, υh = υk, υ−h = υ−k. One can determine the set of h’s best re-
sponses to his opponents playing the same strategy υ. Repeating this at
any υ ∈ I yields a correspondence Rh : I → I. All the sufficient condi-
tions of Kakutani’s theorem are met: I is a compact and convex subset of

5BSW generalize along different lines. For the case of equally sized firms, each firm is
assumed to have unit capacity and equilibrium prices are found for any number of firms
and buyers. Thus, given the number of firms, total demand increases relative to total
capacity as the number of buyers increases.
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the (one-dimensional) Euclidean space, Rh is nonempty, convex, and upper
hemicontinuous for all υ ∈ I. Thus ∃ υ : υ ∈ Rh(υ). By symmetry, Rh is
the same for all h ∈ Z, hence (υ, ..., υ) is an equilibrium. Consequently, a
symmetric MSE must exist if a symmetric PSE does not. The symmetric
pure strategy profile (υa = 1, ..., υz = 1) is ruled out as an equilibrium if
1−pB > 1−pA

2 ; similarly, 1−pA > 1−pB
2 rules out (υa = 0, ..., υz = 0). These

inequalities together constitute (3).
(ii) Let 2pA − 1 > pB. Then υh = 0 is strictly dominant, disqualifying

any strictly mixed strategy profile as an equilibrium. In the special case
where 2pA− 1 = pB, υh = 0 is the unique best response to all k 6= h playing
a strictly mixed strategy: again a strictly mixed strategy profile is ruled
out as an equilibrium. One can argue likewise when pB >

1+pA
2 and when

pB =
1+pA
2 .

We now characterize the symmetric MSE of the buyer game. With all
k 6= h playing υ, the number of them at a firm, l, is binomial, with proba-

bility distribution
µ
z − 1
l

¶
υl(1 − υ)z−1−l and

µ
z − 1
l

¶
(1 − υ)lυz−1−l,

respectively, for A and B. Denote by [π(hsA)]υk=υ and [π(h
s
B)]υk=υ buyer h’s

service probability conditional on visiting A and B, respectively, when all
k 6= h visit A with probability υ. We then have:

[π(hsA)]υk=υ =
z−1X
l=0

µ
z − 1
l

¶
υl(1− υ)z−1−lmin

µ
1,
z/2

l + 1

¶
(5)

and

[π(hsB)]υk=υ =
z−1X
l=0

µ
z − 1
l

¶
(1− υ)lυz−1−lmin

µ
1,
z/2

l + 1

¶
= 0. (6)

When υ is the symmetric equilibrium strategy, then h is indifferent between
A or B. Denote by ϕ(υ, pA, pB) = 0 the function implicitly relating υ to pA
and pB at the symmetric MSE, that is,

ϕ(υ, pA, pB) = (1− pA) [π(hsA)]υk=υ − (1− pB) [π(hsB)]υk=υ = 0. (7)

Implicit differentiation of (7) yields:
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∂υ

∂pA
= −∂ϕ/∂pA

∂ϕ/∂υ
=

[π(hsA)]υk=υ

(1− pA)
h
dπ(hsA)
dυ

i
υk=υ

− (1− pB)
h
dπ(hsB)
dυ

i
υk=υ

, (8)

where

·
dπ(hsA)

dυ

¸
υk=υ

=
z−1X
l=0

l

µ
z − 1
l

¶
υl−1(1− υ)z−1−lmin

µ
1,
z/2

l + 1

¶

−
z−1X
l=0

(z − 1− l)
µ
z − 1
l

¶
υl(1− υ)z−2−lmin

µ
1,
z/2

l + 1

¶
(9)

and·
dπ(hsB)

dυ

¸
υk=υ

= −
z−1X
l=0

l

µ
z − 1
l

¶
(1− υ)l−1υz−1−lmin

µ
1,
z/2

l + 1

¶

+
z−1X
l=0

(z − 1− l)
µ
z − 1
l

¶
(1− υ)lυz−2−lmin

µ
1,
z/2

l + 1

¶
. (10)

For subsequent use we determine ∂υ/∂pA when pA = pB ≡ p:

·
∂υ

∂pA

¸
pA=pB≡p

=

Pz−1
l=0

µ
z − 1
l

¶¡
1
2

¢z−1
min

³
1, z/2l+1

´
(1− p)Pz−1

l=0

µ
z − 1
l

¶¡
1
2

¢z−2
(4l − 2z + 2)min

³
1, z/2l+1

´ .
(11)

A more concise notation would be:

·
∂υ

∂pA

¸
pA=pB≡p

=
[π(hs)]υk= 1

2

2(1− p) £dπ(hsA)/dυ¤
υk=υ=

1
2

, (11’)

where

[π(hs)]υk= 1
2
≡
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
min

µ
1,
z/2

l + 1

¶
(12)
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and

·
dπ(hsA)

dυ

¸
υk=υ=

1
2

=
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−2
(2l − z + 1)min

µ
1,
z/2

l + 1

¶
.

(13)

To clarify the new notation in (11’), note that [π(hs)]υk= 1
2
is in fact the prob-

ability of h being served at either firm when υk =
1
2 for any k 6= h; stated

another way, it is the probability of any buyer being served at the symmetric
MSE of the buyer game when pA = pB. Furthermore, look back at ∂ϕ/∂υ
(see (7) and (8)) and note that [dπ(hsA)/dυ]υk=υ=1

2
= − [dπ(hsB)/dυ]υk=υ= 1

2
:

then it is understood that, in (11), (1−p) is in fact multiplied by 2[dπ(hsA)/dυ]υk=υ= 1
2
.

For any υ ∈ (0, 1), [dπ(hsA)/dυ]υk=υ < 0 and [dπ(hsB)/dυ]υk=υ > 0 : when
υk increases for all k 6= h, buyer h’s service prospects deteriorate at A and
improve at B.

Let [Ey]υ= 1
2
be the firm’s expected output when υh =

1
2 for any h ∈ Z:

[Ey]υ= 1
2
=

zX
l=0

µ
z
l

¶µ
1

2

¶z
min

³
l,
z

2

´
. (14)

Clearly,

[π(hs)]υk= 1
2
=
[Ey]υ= 1

2

y
=
[Ey]υ= 1

2

z/2
. (15)

A few properties of the variables just introduced are now established.

Lemma 2 (i) [π(hs)]υk= 1
2
increases in z, converging to 1 as z → ∞; (ii)

[dπ(hsA)/dυ]υk=υ=1
2
decreases in z, converging to −1 as z →∞; (iii) [∂υ/∂pA]pA=pB≡p

increases in z, converging to −1/2(1− p) as z →∞; (iv) [∂υ/∂pA]pA=pB≡p
decreases in p, converging to −∞ as p→ 1.

Proof. For (i), (ii), and (iii) see the Appendix; (iv) follows from (11’).

Remarks We are especially interested at the intuition for parts (i) and
(iv). Let us begin with (i). With pA = pB, all buyers are served at any
PSE of the buyer game. Hence, 1 − [π(hs)]υk=1

2
is the percapita loss in

total surplus resulting from absence of buyer coordination (which prevents
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them from playing any of the several PSEs). That limz→∞[π(hs)]υk= 1
2
= 1

is clearly suggested by the second column in Table 1. We now see how this
result can also be derived by the weak law of large numbers. Recall that,
with υk =

1
2 for any k 6= h, the number of k 6= h at either firm is binomial

with mean 1
2(z − 1). Hence, the fraction l

z−1 of k 6= h visiting a firm has
mean 1

2 . According to Bernoulli’s theorem,

lim
z→∞Pr

µ
1

2
− ε ≤ l

z − 1 ≤
1

2
+ ε

¶
= 1 ∀² > 0. (16)

A lower bound on [π(hs)]υk= 1
2
is found by noting that

[π(hs)]υk=1
2
> Pr

µ
l

z − 1 ≤
1

2
+ ε

¶
z

2

1

(z − 1)(12 + ε) + 1
=

Pr

µ
l

z − 1 ≤
1

2
+ ε

¶
1

1 + 2ε+ 1
z (1− 2ε)

.

In view of (16), limz→∞Pr
³

l
z−1 ≤ 1

2 + ε
´
= 1 ∀² > 0; also, limz→∞[1/(1 +

2ε+ 1
z (1− 2ε)] = 1

1+2ε , hence limz→∞ [π(h
s)]υk= 1

2
= 1.

Now we get the intuition of part (iv). Recall that (7) holds at the
symmetric MSE of the buyer game. Starting from any pair (pA = p, pB = p),
a unilateral change ∆pA < 0 must result in a change ∆υ > 0 such that
(1 − p − ∆pA) [π(hsA)]υk=1

2
+∆υ = (1 − p) [π(hsB)]υk= 1

2
+∆υ . It derives from

this condition that ∆υ increases with p, converging to 1
2 (the probability of

picking A converging to 1) as p converges to 1, so limp→1 [∂υ/∂pA]pA=pB≡p =−∞. ¤
We now address price determination. Holding (3), the symmetric MSE

of the buyer game is played, hence (4) becomes

·
dEΠA
dpA

¸
υh=υ

= [EyA]υh=υ + pA

·
dEyA
dυ

¸
υh=υ

∂υ

∂pA
, (4’)

where

[EyA]υh=υ =
zX
l=0

µ
z
l

¶
υl(1− υ)z−lmin

³
l,
z

2

´
, (17)
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with υ implicitly defined by (7), and

·
dEyA
dυ

¸
υh=υ

=
zX
l=0

l

µ
z
l

¶
υl−1(1− υ)z−lmin

³
l,
z

2

´
−

zX
l=0

(z − l)
µ
z
l

¶
υl(1− υ)z−1−lmin

³
l,
z

2

´
. (18)

The two following results are important in that they imply that the
maximization problem faced by the firm has a unique interior solution.

Lemma 3 (i) For any pB ∈ (0, 1), denote by p∗A(pB) any pA such that

dEΠA/dpA = 0. Then p∗A(pB) ∈
³
max {2pB − 1, 0} , 1+pB2

´
.

(ii) EΠA is concave.

Proof. (i) From inspection of (4’) one can check that [dEΠA/dpA]υh=υ
is continuous in pA for any pA ∈ (0, 1) , [dEΠA/dpA]υh=υ > 0 at pA = 0,

and [dEΠA/dpA]υh=υ < 0 at any pA ∈
h
1+pB
2 , 1

i
(where υ = 0). Note that,

if pB < 1
2 , then υ < 1 for any pA ∈ [0, 1] while, with pB ≥ 1

2 , then υ = 1 at
any pA ∈ [0, 2pB −1] and [dEΠA/dpA]υh=υ = z/2 at any such pA. Therefore
some p∗A(pB)) must exist and p

∗
A(pB) ∈

³
max {2pB − 1, 0} , 1+pB2

´
.

(ii) In the Appendix.

Corollary p∗A(pB) is unique and p
∗
A(pB) = argmaxpA EΠA(pA).

We are now in a position to solving the pricing game.

Proposition 1 (i) At the unique simmetric pure strategy equilibrium of
the pricing game, ( pA = p∗, pB = p∗), where

p∗ =

1− 1

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

−1 ; (19)

(ii) p∗ ∈ £12 , 23) and increases monotonically in z.
Proof. (i) Looking for any symmetric equilibrium, let pA = pB ≡ p and

hence υ = 1
2 . Next, insert (11’) into (4’), to obtain·

dEΠA
dpA

¸
pA=pB≡p

= [EyA]υ= 1
2
+ p

·
dEyA
dυ

¸
υ= 1

2

[π(hs)]υk= 1
2

2(1− p) £dπ(hsA)/dυ¤
υk=υ=

1
2

,

(20)
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To find [dEyA/dυ]υ=1
2
it should be noted that the demand l forthcom-

ing to the firm when υh =
1
2 for any h ∈ Z has probability distributionµ

z
l

¶
(1/2)z, mean z/2, and variance z/4. It follows that:6

·
dEyA
dυ

¸
υ= 1

2

=
z

2
. (21)

Thus (20) becomes

·
dEΠA
dpA

¸
pA=pB≡p

= [EyA]υ= 1
2
+
z

2

p

(1− p)
[π(hs)]

υk=
1
2

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

. (20’)

The price at a symmetric pure strategy equilibrium is found by setting (20’)
equal to zero. Taking (15) into account, this leads to (19).

(ii) This follows from part (ii) of Lemma 2.

Remarks Thus, regardless of z, the equilibrium price is bounded
away from the reservation price. There is a clear intuition for Proposi-
tion 1. At equilibrium, the marginal cost and marginal benefit of a unilat-
eral price reduction are equal. At a symmetric equilibrium, the marginal
cost per unit of capacity of lowering pA is [EyA]υ= 1

2
/(z/2) (A’s output

is now sold at a lower price): it converges to 1 as z → ∞ (recall (15)
and part (i) of Lemma 2). The marginal benefit per unit of capacity
is −p [dEyA/dpA]υ= 1

2
/(z/2) (A’s expected output increases when pA de-

creases), or−p [dEyA/dυ]υ= 1
2
[∂υ/∂pA]pA=pB≡p /(z/2) = −p [∂υ/∂pA]pA=pB≡p:

by part (iv) of Lemma 2, this is increasing in p, going to infinity as p → 1.
In view of this, p∗ increases in z converging to a limit lower than 1. Finally,
equating marginal cost and marginal benefit in the limit (that is, putting
1 = − p

2(1−p)) yields limz→∞ p
∗ = 2

3 . Convergence of p
∗ to 2

3 is illustrated by
the third column of Table 1. ¤

6 Inserting υ = 1
2
into (18) leads to

·
dEyA
dυ

¸
υ= 1

2

=
zX
l=0

µ
z
l

¶
(2l − z)

µ
1

2

¶z−1
min

³
l,
z

2

´
= 4

z
2−1X
l=0

µ
z
l

¶³
l− z

2

´µ1
2

¶z
l

+2z

z
2
−1X
l=0

µ
z

z − l
¶³

z − l− z

2

´µ1
2

¶z
= 4

z
2
−1X
l=0

µ
z
l

¶³
l − z

2

´2 µ1
2

¶z
=
z

2
.

12



3 Pricing under repeat purchasing

3.1 The buyer game

The buyers are now assumed to take repeat purchasing and visiting decisions,
based on the pair of prices (pA, pB) ∈ P2 set by the firms at t = 0. Without
loss of generality we take pA ≥ pB. At each stage t = 1, ..., T +1 every buyer
chooses which firm to visit and how much to demand, whereupon each firm
produces the minimum between capacity and its forthcoming demand. This
setting incorporates imperfect mobility in a simple way: if rationed, a buyer
cannot switch to the other firm in the same stage.

The buyer does not observe the actions previously taken by the other
buyers: we are envisaging a dynamic buyer game of imperfect information
and simultaneous moves. For simplicity, the buyers are assumed to care only
about their current payoff. Also, individual demand is one at each stage, no
matter whether the buyer got served or rationed in the preceding stages.

In this setting, the firms might reward loyalty: rather than rationing
forthcoming buyers at random, they might commit themselves to the fol-
lowing, discriminatory rule.

DEFINITION 1. According to the discriminatory rationing rule,
when the firm receives more than z/2 buyers at t:

any forthcoming buyer is served with equal probability if t = 1; if t > 1,
the firm serves any forthcoming buyer whom it served at t− 1 and allocates
randomly any remaining capacity among remaining forthcoming buyers. ¤

As a matter of fact, the firms often reward loyalty some way or an-
other. Repeat purchasers may be offered better prices or higher-quality
goods (Bulkley, 1992, Caminal and Matutes, 1990): examples are “frequent
flyer” programs offered by airlines, discount coupons for the next purchase,
and trading stamps at retailers (Crémer, 1984; Schumann, 1986; Banerjee
and Summers, 1987; Klemperer, 1987). Alternatively, as assumed here, the
firms might give service priority to loyal customers. As noted by Carlton
and Perloff: “in many producer good industries, good customers often get
the product during ‘tight’ times, and other customers must wait. [...] Such
rationing has occurred in many industries, such as paper, chemicals, and
metals” (1990, p. 522; see also Carlton, 1991, p. 253).

In what follows we first explore the implications of the discriminatory
rationing rule, which will give us insights into the rationale for such a rule.
In our context of fixed demands and capacities, the discriminatory rule guar-
antees future delivery to any currently satisfied buyer who keeps loyal. The
implications are noteworthy. Let buyer h be served by firm B at some stage

13



t. Then loyalty is actually dominant for this buyer at t+1, for it guarantees
getting the good at the lowest price. One immediate consequence is that
repeat playing of the MSE of the static game cannot be an equilibrium of
the dynamic buyer game. Furthermore, a buyer who gets rationed by B
has no hope of being served by trying B again, if only the buyers currently
served by B are subsequently taking their dominant action. Putting these
two things together, it seems safe to predict that even boundedly rational
buyers are going to be matched to sellers in a quite short time.

But we want to build a complete argument for fully rational buyers,
showing that at an equilibrium of the dynamic buyer game the buyers
abide by a norm of “conditional loyalty”, one that prescribes keeping loyal
if previously served. To pursue this task we need some more notation.
Events and probabilities are now dated by a time index. At any stage
t, we denote by hsA(t) the event of buyer h being served if visiting A,
by zA(t) = # {h : fh(t) = A} the number of buyers visiting A, and bybzA(t) = # {k 6= h : fk(t) = A} the number of all such buyers but h (when
fh(t) = A). At any date t ≥ 2 - just before stage t is played - buyer h is
at an information set, denoted by H(t), containing the buyer’s experience
thus far: H(t) is a (t− 1)-component vector, the τ -th component being an
element of the set {hsA(τ), hrA(τ), hsB(τ), hrB(τ)} for any τ = 1, ..., t− 1.

To solve the dynamic buyer game we develop a variant of Kreps and Wil-
son’s (1987) sequential equilibrium, to be called “assessment equilibrium”.7

It is characterized as follows. At every information set where he may be
called upon to move, the player has a belief on what has transpired, namely,
a probability distribution over histories of the game thus far. An “assess-
ment” is a profile of behavioural strategies along with a system of beliefs
(one for any conceivable information set). Our assessment equilibrium is an
assessment that meets basic consistency requirements, all of which featur-
ing prominently in Kreps and Wilson. “Sequential rationality” extends to
imperfect-information games the requirement that strategies be mutual best
responses: at every information set each player’s equilibrium strategy is an
optimal response to other players obeying their equilibrium strategies from
then on. Sequential rationality must hold at information sets on the equi-
librium path - information sets that occur with positive probability when
the players have always adhered to their equilibrium strategies - as well
as at out-of-equilibrium information sets. Concerning coherence of beliefs
with strategies, our assessment equilibrium imposes Kreps and Wilson’s re-
quirement of “structural consistency” rather than their more controversial

7Binmore (1992) defines so a weakened version of sequential equilibrium.
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requirement of “consistency”.8 Structural consistency means that, in all
contingencies, beliefs can be derived using Bayes’ rule. More precisely, at
information sets on the equilibrium path, beliefs are derived by Bayes’ rule
and the assumption that every other player has adhered to his equilibrium
strategy thus far. At out-of-equilibrium information sets, beliefs are derived
by Bayes’ rule under some alternative assumption about the strategies the
other players have played thus far. As illustrated later on, when dealing
with such information sets the following restriction is conveniently placed
upon beliefs, besides structural consistency.

ASSUMPTION 1. Suppose at some date buyer h is at an information
set off the equilibrium path. Then h’s belief allows for past deviations from
their equilibrium strategy on the part of other buyers to the extent that this
is needed to reconcile h’s past experience with Bayes’ rule. ¤

To shorten our argument, we rule out, by assumption, the most obvious
mistake the buyers might do.

ASSUMPTION 2 No buyer ever plays a strictly dominated action. ¤
Of course, for a myopic buyer, playing a strictly dominated action - one

entailing a lower expected payoff at that stage, regardless of the other buy-
ers’ current actions - is definitively wrong, no matter the future course of
action. Every buyer should avoid making such an obvious mistake. Adher-
ence to Assumption 2 involves a limitation in the analysis when looking for
the equilibrium of the dynamic buyer game. Indeed, a complete action plan
should also include prescriptions applying at information sets which might
only arise after some buyer has played a strictly dominated action. Unfor-
tunately, laying down the prescriptions of the equilibrium strategy applying
at some of these information sets is not always easy. By Assumption 2 these
difficulties are sidestepped by assigning zero probability to such information
sets.

Incidentally, there are two circumstances under which a buyer has a
strictly dominated action. With 2pA−1 > pB, visiting A at stage one yields
a strictly lower expected payoff than visiting B, no matter what the other
buyers are doing. Also, when pB < pA switching to A at any stage t ≥ 2 is
a strictly dominated action for a buyer who got served by B at t− 1.

Conditional loyalty is now incorporated into a strategy for the buyer
game.

8For doubts about the latter, see Osborne and Rubistein (1994, pp. 224-225). Inci-
dentally, though not included in the definition of sequential equilibrium, structural con-
sistency was held by Kreps and Wilson to be implied by “consistency”, a claim that was
subsequently disproved by Kreps and Ramey (1987).
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DEFINITION 2. The strategy of conditional loyalty (henceforth,
(Θ)) makes the following prescriptions to the buyer:

(a) With 2pA − 1 < pB, at t = 1 play the equilibrium mixed strategy of
the static buyer game; at any t > 1, keep loyal if served at t− 1 and switch
between sellers if rationed;

(b) With 2pA − 1 ≥ pB, at t = 1 visit B with unit probability; at any
t ≥ 2, do as in (a). ¤

The evolution of play when all buyers are obeying Θ is readily found.

Proposition 2 If all buyers obey Θ, then each firm will have a stable
body of z/2 customers at any t ≥ 2.

Proof. With all buyers obeying Θ, zA(2) = zB(2) = z/2 no matter the
buyer allocation at t = 1. All buyers are thus certainly served at t = 2, hence
they all keep loyal at t = 3, and so on.

Before making our case for conditional loyalty further notation must be
introduced. Denote by ρ the allocation of all k 6= h among the firms. At
any date t ≥ 2, we denote by µ(ρ(t−1) | H(t)) buyer h’s ex-post probability
distribution over ρ in the stage just elapsed and by π(ρ(t) | H(t)) his ex-
ante probability distribution over ρ for the incoming stage, both conditional
on H(t). From H(t) buyer h can derive a belief, that is, an ex-post joint
probability distribution over ρ(τ) at any τ = 1, .., t − 1. This allows h
to compute µ(bzA(t − 1) | H(t)) and µ(bzB(t − 1) | H(t)), that is, an ex
post probability distribution over the number of k 6= h having visited A
and B, respectively, at stage t − 1. Next, assuming all k 6= h are obeying
Θ in the incoming stage t, buyer h can construct an ex-ante probability
distribution over the number of k 6= h visiting each firm at t, denoted by
π(bzA(t) | H(t)) and π(bzB(t) | H(t)). Together with µ(bzA(t − 1) | H(t))
and µ(bzB(t − 1) | H(t)), this in turn allows h to estimate his own service
probability at A and B, denoted by π(hsA(t) | H(t)) and π(hsB(t) | H(t)),
respectively. For example, π(hsA(3) | hrA(1), hsB(2)) denotes the probability
that buyer h is served if visiting A at t = 3, as assessed by h conditional on
service history H(3) =(hrA(1), h

s
B(2)).

We now see that the buyers will be conditionally loyal at an equilibrium
of the dynamic game.

Proposition 3 Along with coherent beliefs, all buyers obeying Θ is an
assessment equilibrium of the dynamic buyer game.

Proof. Along the proof we will occasionally use Assumption 1, so it is
worth illustrating it. Let 2pA−1 < pB and concede validity of Proposition 3.
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Suppose h’s information set at date 3 is, say, H(3) = (hrA(1), h
s
A(2)). Then h

is clearly off the equilibrium path at that date: h has deviated himself from
Θ at stage two; furthermore, h infers from H(3) that some buyer previously
served by A has switched to B at t = 2, in violation of Θ. On the other
hand, according to Assumption 1 any buyer who was served by B as well as
any buyer who was rationed by A are believed to have obeyed Θ at stage
two: indeed, as one can verify, believing so is consistent with H(3).

Along the proof it is helpful to distinguish among stage one, stage two,
and any subsequent stage.

Optimality of Θ at t = 1. Obeying Θ is by definition a mutual best
response at t = 1.

Optimality of Θ at t = 2. At t = 2 obeying Θ is dominant when hsB(1)
or when hsA(1) and pA = pB. With h

r
A(1) or h

r
B(1), switching between sellers

is clearly h’s best response to the other buyers playing Θ at t+ 1.
So we are left with the case in which H(2) = hsA(1) and pA > pB.

Note that, if it were 2pA − 1 > pB, then h would have played a strictly
dominated action at stage one by visiting A. Therefore, by Assumption 2
we can restrict ourselves to the case 2pA − 1 ≤ pB. The case 2pA − 1 = pB
is readily dealt with. All k 6= h are believed to have obeyed Θ at stage one:
consequently, µ(bzB(1) = z − 1 | hsA(1)) = 1, implying π(hsB(2) | hsA(1)) =
0. More elaboration is needed if 2pA − 1 < pB. Again the event hsA(1) is
consistent with all k 6= h having obeyed Θ at stage one, that is, with every
k having picked either firm with positive probability. Then h perceives to
have a positive service probability if switching to B at stage two: there is
in fact a chance of being served if bzA(1) ≥ z/2, in which case, according to
Θ, unsatisfied buyers are moving to B at stage two. While keeping loyal to
A yields a surplus of 1− pA, switching to B results in an expected surplus
of (1− pB)π(hsB(2) | hsA(1)). So it has to be shown that

1− pA > (1− pB)π(hsB(2) | hsA(1)). (22)

Note that (1 − pA)π(hsA(1)) = (1 − pB)π(hsB(1)) : since all k 6= h are held
to have obeyed Θ at stage one, h was indifferent between A and B at that
stage. Hence we would be done by showing that

π(hsB(2) | hsA(1)) < π(hsB(1)). (23)

Note that

π(hsB(1)) = π (bzB(1) < z/2) + z−1X
l=z/2

π(bzB(1) = l) z/2
l + 1

, (24)
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where π(bzB(1) = l) = µ z − 1
l

¶
(1− υ)lυz−1−l. On the other hand,

π(hsB(2) | hsA(1)) =
z/2−1X
l=0

µ(bzB(1) = l | hsA(1)) (z/2)− l
(z/2)− l + 1 . (25)

This equation is readily understood. By moving to B at t = 2, h has a
chance of being served if B was faced with l < z/2 buyers at t = 1. Then h
would compete at B with (z/2− l) buyers - those previously rationed by A,
who are now moving to B - over an output of z/2− l. To see that the RHS
of (25) is less than that of (24) it suffices to show that

Pz/2−1
l=0 µ(bzB(1) =

l | hsA(1)) < π(bzB(1) < z/2). It must preliminarily be noted that π(bzB(1) <
z/2) = π(bzB(1) < z/2 | fh(1) = A) = π(bzB(1) < z/2 | fh(1) = B).9

Consequently,

π(bzB(1) < z/2) = π (bzB(1) < z/2, hsA(1)) + π(bzB(1) < z/2, hrA(1))
= π (hsA(1))µ(bzB(1) < z/2 | hsA(1)) + π(hrA(1))µ(bzB(1) < z/2 | hrA(1))

= π (hsA(1))µ(bzB(1) < z/2 | hsA(1)) + 1− π(hsA(1)). (26)

The scrutiny of (26) reveals that µ (bzB(1) < z/2 | hsA(1)) < π(bzB(1) < z/2).
Optimality of Θ at t ≥ 2. We begin supposing h at date t is at an

information set on the equilibrium path. This means that h has obeyed Θ
thus far and, by Proposition 2, that h has been served at τ = 2, ..., t − 1.
Then obeyingΘ at stage t results in a unit service probability while switching
between firms results in a zero service probability.

Suppose next h at some date t > 2 is at an information set off the
equilibrium path. The argument follows the previous lines when hrB(t − 1)
or hrA(t − 1) as well as when hsB(t − 1) or, with pA = pB, hsA(t − 1). So we
are again left with the case in which hsA(t− 1) and pA > pB. This collection
of information sets can be partitioned into the following subsets:

(a) H(t) =(..., hsA(t−2), hsA(t−1)). Note that for any such H(t) to be off
the equilibrium path the same must be so as for H(t − 1) =(..., hsA(t − 2)).
By Assumption 1, at date t all k 6= h are then believed to have obeyed Θ at
stage t− 1. On reflection, this implies µ(bzB(t− 1) = z/2 | H(t)) = 1 so that
π (hsB(t) | H(t)) = 0.

(b) H(t) = (..., hrA(t − 2), hsA(t − 1)). This reveals that at t − 1 some
buyer previously served by A has moved to B. Along with Assumption 1
this implies that µ(bzB(t− 1) ≥ z/2 | H(t)) = 1 so that π (hsB(t) | H(t)) = 0.

9Obviously, the probability that bzB(1) < z/2 does not depend on h’s action at t = 1.
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(c) H(t) = (..., hsB(t − 2), hsA(t − 1)). By Assumption 2, we can limit
ourselves to the case in which pA = pB. Optimality of Θ at t is then obvious.

(d) H(t) = (..., hrB(t − 2), hsA(t − 1)). This is consistent with all k 6= h
having obeyed Θ at t − 1. Accordingly µ (bzB(t− 1) = z/2 | H(t)) = 1 and
π (hsB(t) | H(t)) = 0.

Remarks It should be clear the type of learning that is taking place
along the equilibrium path. Some efficient allocation (any such that zA(t) =
zB(t) = z/2) is certainly achieved by t = 2 without buyer h actually knowing
which firm any k 6= h is going to visit in the incoming stage. The action
currently made by any k depends on whether k was served at t−1, something
which h can neither observe nor infer for sure (if z > 2). Yet h is able to
predict the custom sizes at the two firms. For example, let hsA(t− 1). Then
h predicts bzA(t) = z/2− 1, which is correct if all k 6= h are obeying Θ at t.

It is worth emphasizing that the market becomes segmented while the
buyers are learning about each firm’s custom size. Assume pA = pB ≡ p.
Then at any t ≥ 2 every buyer gets surplus 1 − p on the equilibrium path.
Yet the firms are ex post no longer equivalent to the buyers: at any t ≥ 2
switching between sellers would prejudice the buyer’s service prospects. ¤

3.2 Solving the entire game

At t = 0 the firms set prices whereupon the assessment equilibrium of the
buyer subgame is played. Each firm is concerned with its (undiscounted)
expected profits over the T + 1 stages of the buyer game. This is writ-
ten

PT+1
t=1 EΠA(t) = EΠA(1) +

PT+1
t=2 EΠA(t) for firm A. Looking for a

symmetric pure strategy equilibrium of the pricing game leads to:

Proposition 4 (i) At the unique symmetric pure strategy equilibrium (pA =
p∗∗, pB = p∗∗), where

p∗∗ =

1− 1

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

³
1 + T/ [π(hs)]υk=υ= 1

2

´
−1 ; (27)

(ii) p∗∗ > p∗, and p∗∗ increases in T with p∗∗ → 1 as T → ∞; (iii)
p∗∗ increases in z with p∗∗ → 2+2T

3+2T as z →∞.

Proof. (i) At any pair of prices meeting (3),
PT+1
t=1 EΠA(t) = pA [EyA]υh=υ+

pA
z
2T at the resulting assessment equilibrium of the dynamic buyer subgame.
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We put pA = pB ≡ p∗∗ and υ = 1
2 into the FOC for an interior maximum.

Recalling (21) and (11’), it is obtained:

[EyA]υ= 1
2
+
z

2

p∗∗

(1− p∗∗)
[π(hs)]υk=1

2

2
£
dπ(hsA)/dυ

¤
υk=υ=

1
2

= −z
2
T. (28)

Solving (28) and using (15) leads to (27). That p∗∗ is actually a best re-
sponse to firm B charging p∗∗ follows from two facts. First, concavity of
EΠA(1) implies concavity of

PT+1
t=1 EΠA(t) over the interval

h
0, 1+pB2

i
of

pA; consequently
PT+1
t=1 EΠA(t) would be lower at any pA 6= p∗∗ in this in-

terval. Second, d
PT+1
t=1 EΠA(t)/dpA = z

2T for pA ∈ (1+pB2 , 1] (where no
demand is addressed to A at t = 1). Clearly, for pA in this interval, the best
option would be to set pA = 1. This affords a total profits of z2T to A, which,
as one can check, is less than p∗∗ z2([π(h

s)]υk= 1
2
+ T ).

(ii) By comparing (27) with (19) it is seen that p∗∗ > p∗. Also, p∗∗

increases in T , converging to 1 as T →∞.
(iii) That p∗∗ increases in z follows from part (iii) of Lemma 2 (re-

call (11’)). Further, it follows from parts (i) and (ii) of Lemma 2 that
limz→∞ p∗∗ = 2+2T

3+2T .

Remarks The intuition of part (ii) goes as follows. At any (pA =
p, pB = p) the marginal benefit of lowering pA is −p[dEyA/dpA]υ= 1

2
(A’s

expected output increases at t = 1). This is proportional to p
1−p , hence

increasing in p and becoming indefinitely large as p→ 1. The marginal cost
is now z

2

³
[π(hs)]υk=1

2
+ T

´
, the term z

2T reflecting the fall in revenues at
any t ≥ 2. The marginal cost thus increases in T and becomes indefinitely
large as T →∞. It follows from all this that p∗∗ > p∗; also, p∗∗ increases in
T with limT→∞ p∗∗ = 1. Thus the impact on equilibrium prices of imperfect
mobility becomes less and less important as the number of stages of the
buyer game increases: equilibrium prices under imperfect mobility converge
to their value under perfect mobility.

An illustration of parts (ii) and (iii) is provided by the right part of Table
1, where p∗∗ has been computed for different values of z and T .

3.3 More on the rationing rule

Adoption of the discriminatory rationing rule has thus far been taken for
granted. The question naturally arising is whether the firms would act so in
the first place. To begin, take the firms to be somehow committed to ration
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randomly among their forthcoming buyers. Then, it is immediately seen
that, unlike under the discriminatory rule, with (pA, pB) meeting (3), repeat
playing of the symmetric MSE of the static buyer game is an equilibrium of
the dynamic game.

Existence of such an equilibrium clearly suggests that there is no guaran-
tee that misallocations will disappear when the firms ration randomly. Yet,
and somewhat surprisingly, this is still a possibility: conditional loyalty can
be an assessment equilibrium.10 Suppose buyer h is rationed at t : one can
readily verify that, as long as all k 6= h are obeying Θ at t+ 1, buyer h will
be served with unit probability at t + 1 if obeying Θ and with probability
z/(z+2) if deviating from Θ. Exactly the same service probabilities obtain
if h is served at t. The implication is straightforward: even under random
rationing, if prices are equal or sufficiently close to each other, then obeying
Θ is an assessment equilibrium of the dynamic buyer game. The loss in
service probability from unilaterally deviating from Θ equals (1−z/(z+2)).
It deserves to be noted, though, that this loss is much less than under the
discriminatory rule (when it equals 1 at any t > 2) and becoming smaller
and smaller as z increases. Furthermore, less-than fully rational buyers may
fail to recognize the benefits from conditional loyalty: unlike under the dis-
criminatory rule, for a buyer who got served by the lower priced firm keeping
loyal is not a dominant action. To keep the argument most simple, let us
assume that repeat playing of the MSE of the static game is the equilibrium
actually played by the buyers under random rationing. Then we can draw
on Section 2 to solve the pricing game: with the random rule in place, the
firms set prices at p∗ at the (symmetric) pure-strategy equilibrium.

We now see what happens when both firms turn exogeneously from the
random to the discriminatory rationing rule. The market becomes more
efficient due to the full exploitation of capacity at t ≥ 2: total surplus rises
by zT (1− [π(hs)]υk=1

2
). The firms benefit from both the increased efficiency

and their increased market power (p∗∗ > p∗), whereas the buyers are worse
off. The buyer is clearly harmed at t = 1, where his expected surplus falls
by (p∗∗ − p∗) [π(hs)]υk=1

2
. He is also worse off at any t > 1, though being

10This result can actually be extended to the case of any number of firms. In two earlier
works we have argued that, with the firms charging the same exogenously given price,
conditional loyalty is an assessment equilibrium of the dynamic buyer game with either
rationing rule (De Francesco, 1996 and 1998).
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now served for sure: 1− p∗∗ < (1− p∗) [π(hs)]υk=1
2
.11

At long last, we are able to endogenize the rationing rule. Let the firms
have two simultaneous choice variables at t = 0 : besides setting prices, they
commit independently to either the random or the discriminatory rationing
rule. Then there are two candidate symmetric equilibria: one in which the
firms ration randomly and set prices at p∗ and another where they adopt
the discriminatory rule and charge p∗∗. The former is ruled out, though,
because it pays the firm to unilaterally deviate to the discriminatory rule
(even keeping its price unchanged). Note that loyalty is dominant for any
buyer who gets served by the deviating firm. Consequently, repeat playing of
the MSE of the static buyer game is no longer an equilibrium of the dynamic
buyer subgame, while the assessment equilibrium in which the buyers obey
Θ becomes intuitively compelling. Thus the deviation is expected to result
in higher output and profits.

It can similarly be shown that it is an equilibrium for the firms to adopt
the discriminatory rationing rule and set p∗∗. Consider a unilateral deviation
to random rationing. Since one firm is still adopting the discriminatory rule,
repeat playing of the MSE of the static buyer game cannot be an equilibrium,
while the assessment equilibrium where the buyers obey Θ still retain its
intuitive appeal. So the deviation under discussion does not affect expected
profits of either firm.

4 Conclusion

We have examined Bertrand-Edgeworth competition for a symmetric duopoly
in a setting where total capacity equals (an inelastic) total demand, the good
is purchased repeatedly once prices are set, and the buyers are imperfectly
mobile across firms. A strong case case has emerged for the firms to serve
loyal customers first. Then being loyal if previously served is readily recog-
nized by the buyers as the right thing to do. This leads to some efficient
buyer allocation to be quickly reached and mantained forever after. The

11 In view of (19) and (27), this condition amounts to

[π(hs)]υk= 1
2
>
1− 2(1− T )[dπ(hsA)

dυ
]υk=υ= 1

2

1− 2[ dπ(hsA)
dυ

]υk=υ= 1
2

.

This inequality is always met. In fact, taking account of part (ii) of Lemma 2, the LHS is
maximal at z = 2 and T = 2. The maximum is zero because, as one can check from (9),
[
dπ(hsA)

dυ
]υk=υ= 1

2
= −1/2 at z = 2.
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implications for pricing are straightforward. The gain from price undercut-
ting becomes a short-lived one because the buyers will soon be perfectly
matched to sellers anyway. As a result, equilibrium prices are higher than
if the buyers were involved in a static buyer game; they actually converge
to their value under perfect mobility as the number of stages of the buyer
game increases.

While market efficiency improves when loyalty is rewarded, it is only the
sellers who reap the benefits; the increase in their market power is large
enough so as to make the buyers worse off. It would be interesting to check
how this conclusion depends on the short-run setting of the present model.
This is a task we leave to future research, which might analyze price compe-
tition with imperfect mobility in a long-run framework in which the number
and the capacity of firms are endogenous.
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APPENDIX
Proof of Lemma 2. (i) In view of (14), (15) can be written

[π(hs)]υk= 1
2
=
2

z

z
2X
l=0

µ
z
l

¶µ
1

2

¶z
l +

zX
l= z

2
+1

µ
z
l

¶µ
1

2

¶z
, (29)
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where l is binomial, with mean z/2 and standard deviation
√
z/2. It follows

from symmetry and unimodality that
zX

l= z
2
+1

µ
z
l

¶µ
1

2

¶z
=
1

2
− 1
2

µ
z
z
2

¶µ
1

2

¶z
. (30)

Using the Stirling formula, n! ≈ √2πn(n+1/2)e−n, it is obtained
1

2

µ
z
z/2

¶µ
1

2

¶z
=

1√
2
√
π
√
z
. (31)

On reflection, the mean of l can be written

z

2
=

z
2X
l=1

µ
z
l

¶µ
1

2

¶z
l +

z
2
−1X
s=0

µ
z
s

¶µ
1

2

¶z
(z − s). (32)

Note that
µ
z
l

¶
l =

µ
z
s

¶
(z − s) for any l = 1, ..., z2 , s = l − 1, hence the

two sums on the RHS of (32) are equal. Consequently,
z
2X
l=0

µ
z
l

¶µ
1

2

¶z
l =

z

4
. (33)

Inserting (30), (31), and (33) into (29) yields

[π(hs)]υk= 1
2
= 1− 1√

2
√
π
√
z
. (34)

Thus [π(hs)]υk=1
2
increases in z with limz→∞ [π(hs)]υk= 1

2
= 1.

(ii) Equation (13) can be written·
dπ(hsA)

dυ

¸
υk=υ=

1
2

= 4
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
(l + 1)min

µ
1,
z/2

l + 1

¶

−2(z + 1)
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
min

µ
1,
z/2

l + 1

¶
, (13’)

or, more concisely, as·
dπ(hsA)

dυ

¸
υk=υ=

1
2

= 4
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
(l + 1)min

µ
1,
z/2

l + 1

¶
−2(z + 1) [π(hs)]υk= 1

2
. (13”)
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Note that

4
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
(l + 1)min

µ
1,
z/2

l + 1

¶
=

4

z
2
−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
l + 4

z
2
−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
+

2z
z−1X
l= z

2

µ
z − 1
l

¶µ
1

2

¶z−1
= 4

z
2
−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
l + 2 + z. (35)

Binomial l in
P z

2
−1

l=0

µ
z − 1
l

¶
(12)

z−1l is symmetric and bimodal, with mean

z−1
2 and standard deviation

√
z−1
2 . The mean can be written as

z − 1
2

=

z
2
−1X
l=1

µ
z − 1
l

¶µ
1

2

¶z−1
l +

µ
z − 1
z/2

¶µ
1

2

¶z−1 z
2
+

z
2
−2X
s=0

µ
z − 1
s

¶µ
1

2

¶z−1
(z − 1− s). (36)

The two sums on the RHS are equal because
µ
z − 1
l

¶
l =

µ
z − 1
s

¶
(z−

1− s) for any l = 1, ..., z2 − 1 and s = l − 1. Therefore,
z
2
−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
l =

z − 1
4
− 1
2

µ
z − 1
z
2

¶µ
1

2

¶z−1 z
2
, (37)

or, by applying the Stirling’s formula,

z
2
−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
l =

z − 1
4
−
√
2
√
z

4
√
π
. (38)

Inserting (38) into (35) yields

4
z−1X
l=0

µ
z − 1
l

¶µ
1

2

¶z−1
(l + 1)min

µ
1,
z/2

l + 1

¶
= 2z + 1−

√
2
√
z√

π
. (39)
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By substituting (34) and (39) into (13”) it is finally obtained·
dπ(hsA)

dυ

¸
υk=υ=

1
2

= −1 + 2√
2
√
π
√
z
. (40)

The RHS of (40) is decreasing in z and converging to −1 as z →∞.
(iii) Inserting (34) and (40) into (11’) gives:·

∂υ

∂pA

¸
pA=pB≡p

=

µ
1− 1√

2
√
π
√
z

¶
1

2 (1− p)
³

2√
2
√
π
√
z
− 1
´ . (41)

It is immediately seen that [∂υ/∂pA]pA=pB → − 1
2(1−p) as z →∞. Also:

∂

∂z

·
∂υ

∂pA

¸
pA=pB≡p

=
1

1− p
1√

2
√
π
√
z3

1

( 4√
2
√
π
√
z
− 2)2 > 0.

Proof of part (ii) of Lemma 3. Unlike in the two-buyer case,
proving concavity for general z is burdensome. To shorten notation, from
now on we drop subscripts for variables at the simmetric MSE of the buyer
game: we accordingly refer to [π(hsA)]υk=υ , as π(h

s
A), to d [π(h

s
A)]υk=υ /dυ

as dπ(hsA)/dυ, and so on. In (4’), EyA obviously decreases as pA increases
(and υ correspondingly decreases). Hence we are assured of concavity if

d

dpA

µ
pA
dEyA
dυ

∂υ

∂pA

¶
≤ 0. (42)

After rearrangement, this derivative can be written as

d

dpA

µ
pA
dEyA
dυ

∂υ

∂pA

¶
=
dEyA
dυ

µ
∂υ

∂pA
+ pA

∂2υ

∂p2A

¶
+

pA

·
d2EyA
dυ2

∂υ

∂pA
+
dEyA
dυ

∂2υ

∂υ∂pA

¸
∂υ

∂pA
. (42’)

We know that dEyA/dυ ≥ 012and ∂υ/∂pA < 0. Note that ∂2υ/∂p2A ≤ 0
given that

∂2υ

∂p2A
=

1

[∂ϕ/∂υ]2
π(hsA)

dπ(hsA)

dυ
(43)

12 It can be checked from (18) that dEyA/dυ = 0 at υ = 1.
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and dπ(hsA)/dυ ≤ 0.13 Hence, a sufficient condition for (42’) to hold is
d2EyA
dυ2

∂υ

∂pA
+
dEyA
dυ

∂2υ

∂υ∂pA
≥ 0, (44)

that is,

d2EyA
dυ2

∂υ

∂pA
+
dEyA
dυ

1

[∂ϕ/∂υ]2

µ
dπ(hsA)

dυ

∂ϕ

∂υ
− π(hsA)

∂2ϕ

∂υ2

¶
≥ 0. (45)

Making use of (7), ∂ϕ/∂υ and ∂2ϕ/∂υ2 can be written as

∂ϕ

∂υ
= (1− pA)

µ
dπ(hsA)

dυ
− π(hsA)

π(hsB)

dπ(hsB)

dυ

¶
, (46)

and

∂2ϕ

∂υ2
= (1− pA)

µ
d2π(hsA)

dυ2
− π(hsA)

π(hsB)

d2π(hsB)

dυ2

¶
. (47)

By inserting (46) and (47) into (45), this becomes

dEyA
dυ

dπ(hsA)

dυ

µ
dπ(hsA)

dυ
π(hsB)−

dπ(hsB)

dυ
π(hsA)

¶
+π(hsA)

·
d2EyA
dυ2

µ
dπ(hsA)

dυ
π(hsB)−

dπ(hsB)

dυ
π(hsA)

¶
−dEyA

dυ

µ
d2π(hsA)

dυ2
π(hsB)−

d2π(hsB)

dυ2
π(hsA)

¶¸
≥ 0. (48)

Since the expression on the first line is always nonnegative, a sufficient con-
dition for (48) to hold is

d2EyA
dυ2

µ
dπ(hsA)

dυ
π(hsB)−

dπ(hsB)

∂υ
π(hsA)

¶
−dEyA

dυ

µ
d2π(hsA)

dυ2
π(hsB)−

d2π(hsB)

dυ2
π(hsA)

¶
≥ 0 (49)

Validity of (49) follows from the fact that both of the two following inequal-
ities hold:

d2EyA
dυ2

dπ(hsA)

dυ
− dEyA

dυ

d2π(hsA)

dυ2
≥ 0, (50)

13 It can be checked from (9) that dπ(hsA)/dυ = 0 at υ = 0.
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d2EyA
dυ2

dπ(hsB)

dυ
− dEyA

dυ

d2π(hsB)

dυ2
≤ 0. (51)

The argument establishing either inequality is long and tedious. In what
follows we will establish (51) (the argument would run along similar lines
for (50)). The uninterested reader might skip the proof and nevertheless be
persuaded of (50) and (51) by running simulations through a package such
as Maple: it would be found that, no matter the value of z being tried, (50)
and (51) are met over the entire interval [0, 1] of υ.

The proof exploits a few additional relationships between variables of
concern. By comparing (5) with (17) it is readily found that14

EyA = zυπ(h
s
A). (52)

Consequently,

dEyA
dυ

= z

µ
π(hsA) + υ

dπ(hsA)

dυ

¶
(53)

and

d2EyA
dυ2

= z

µ
2
dπ(hsA)

dυ
+ υ

d2π(hsA)

dυ2

¶
. (54)

It is also helpful to relate d2π(hsA)/dυ
2, dπ(hsA)/dυ, and π(h

s
A) to each other.

Note that, for any l ∈ {2, ..., z − 1} and l0 = l − 1,

l

µ
z − 1
l

¶
υl−1(1− υ)z−1−l = (z − 1− l0)

µ
z − 1
l0

¶
υl
0
(1− υ)z−2−l

0
.

In view of this (9) can be rewritten as

dπ(hsA)

dυ
= −z

2

z−1X
l= z

2

µ
z − 1
l

¶
υl−1(1− υ)z−1−l

1

l + 1
. (9’)

By comparing (9’) with (5) it is seen that

dπ(hsA)

dυ
= −1

υ

π(hsA)−
z
2
−1X
l=0

µ
z − 1
l

¶
υl(1− υ)z−1−l

 . (55)

14This follows from the fact that, for any l = 1, .., z,µ
z
l

¶
υl(1− υ)z−l = zυ

µ
z − 1
l− 1

¶
z

l+ 1
υl−1(1− υ)z−1−(l−1) .
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Differentiation of (55) then leads to

d2π(hsA)

dυ2
= −2

υ

dπ(hsA)

dυ
−
µ
z − 1
z
2

¶
υ
z
2
−2(1− υ)

z
2
−1 z
2
. (56)

We proceed likewise with regard to d2π(hsB)/dυ
2, dπ(hsB)/dυ, and π(hsB).

First, (10) can be rewritten as

dπ(hsB)
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z−1X
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µ
z − 1
l

¶
(1− υ)l−1υz−1−l

1
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. (10’)

Second, from a comparison of (10’) and (6) it is found that
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dυ
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1

1− υ

π(hsB)−
z
2
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µ
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l
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 . (57)

Finally, differentiation of (57) yields
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−
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z − 1
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2
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2
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Substituting all the above equations into (51) and dividing by −(1− υ)z−2,
it is finally obtained
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z
2
−1−l ≥ 0. (59)

The negative part in the LHS of (59) is made up of the expression on the
last line. By letting h = z

2 + 1− l, this is written as

−z
2

µ
z − 1
z
2

¶ z
2
+1X
h=2

µ
z − 1

z
2 + 1− h

¶
υz−h(1− υ)h−2.
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On close scrutiny, in the LHS of (59) also the positive part contains terms
in υz−h(1− υ)h−2 (along with other terms): each such term is equal to

z

2

h−1X
j=1

µ
z − 1

z
2 − 1 + j

¶µ
z − 1

z
2 + j − h
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4
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+
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¸
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Validity of (59) can thus be established by showing that

−
µ
z − 1
z
2

¶µ
z − 1

z
2 + 1− h

¶
+
h−1X
j=1

µ
z − 1

z
2 − 1 + j

¶µ
z − 1

z
2 + j − h

¶
4

z + 2j

+

µ
z − 1
z
2

¶µ
z − 1

z
2 − 2 + h

¶
z

z + 2h− 2 ≥ 0 ∀h = 2, ..., z
2
+ 1. (60)

For h ∈ {2, 3} validity of (60) can be checked by substitution. As for any
3 < h ≤ z

2 +1, note that, in the sum on the first line of (60), any j term has
the same binomial coefficient as any j0 =(h− j) one. Thus we have
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and
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We first deal with the case of any odd h. Inserting (61) into (60) leads toµ
z − 1
z
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¶µ
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z
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It is important to note that, for any j = 2, ..., h−12 ,µ
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By taking (63) into account and simplifying, (60’) becomesµ
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Validity of (64) is immediate for h = 5. For any h ∈ {7, 9, ...}, it will be
proved by establishing
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or, more succintly,
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where
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It is readily seen that f2 > f1 for any h ∈ {7, 9, ... z2 +1} and that fj+1 > fj
for any j = 2, ..., h−12 − 1. Consequently −2hf1 + 8
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The argument runs along similar lines for h an even number. Inserting
(62) into (60) and using (63), we now get:µ
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A sufficient condition for (60”) to hold is then

−2h
(z + 2)(z + 2h− 2)z + 8

µ
z(z − 2)

(z + 2)(z − 2h+ 4)(z + 4)

+z

h
2
−1X
j=3

Πj−1k=1 (z − 2k)
Πjk=1 (z + 2k)

Πj−1r=2 (z + 2h− 2r)
Πjr=2 (z − 2h+ 2r)


+4
Π

h
2
−1

k=1 (z − 2k)
Π

h
2
−1

k=1 (z + 2k)

Π
h
2
−1

r=2 (z + 2h− 2r)
Π

h
2
r=2 (z − 2h+ 2r)

≥ 0, (67)
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or

−2hf1 + 8
f2 +

h
2
−1X
j=3

fj

+ 4z + h
z

fj=h
2
≥ 0. (68)

Arguing as above, it suffices that −2h+ 8(h2 − 2) + 4 ≥ 0, which is actually
the case for any h ≥ 6.
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z [π(hs)]υh=1/2 p∗ p∗∗

T = 10 T = 20 T = 40 T = 80

2 .75 .5 .934 .965 .9819 .990

4 .81 .55 .943 .969 .9843 .9920

10 .87 .60 .949 .972 .9859 .9928

20 .91 .62 .951 .974 .9866 .9932

50 .94 .639 .953 .9752 .9871 .9934

100 .96 .647 .954 .9757 .9874 .9936

400 .98 .657 .955 .9762 .9876 .9937

5, 000 .99 .66 .956 .9766 .9878 .9938

TABLE I
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